Search results for "Multiple kernel learning"

showing 3 items of 3 documents

A General Frame for Building Optimal Multiple SVM Kernels

2012

The aim of this paper is to define a general frame for building optimal multiple SVM kernels. Our scheme follows 5 steps: formal representation of the multiple kernels, structural representation, choice of genetic algorithm, SVM algorithm, and model evaluation. The computation of the optimal parameter values of SVM kernels is performed using an evolutionary method based on the SVM algorithm for evaluation of the quality of chromosomes. After the multiple kernel is found by the genetic algorithm we apply cross validation method for estimating the performance of our predictive model. We implemented and compared many hybrid methods derived from this scheme. Improved co-mutation operators are u…

Scheme (programming language)Multiple kernel learningbusiness.industryComputationPattern recognitionCross-validationSupport vector machineGenetic algorithmArtificial intelligenceGeneral framebusinesscomputerKernel (category theory)Mathematicscomputer.programming_language
researchProduct

Learning the relevant image features with multiple kernels

2009

This paper proposes to learn the relevant features of remote sensing images for automatic spatio-spectral classification with the automatic optimization of multiple kernels. The method consists of building dedicated kernels for different sets of bands, contextual or textural features. The optimal linear combination of kernels is optimized through gradient descent on the support vector machine (SVM) objective function. Since a na¨ive implementation is computationally demanding, we propose an efficient model selection procedure based on kernel alignment. The result is a weight — learned from the data — for each kernel where both relevant and meaningless image features emerge after training. E…

Image classificationComputer scienceFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONImage processingMachine learningcomputer.software_genreKernel (linear algebra)Robustness (computer science)Multiple kernel learning (MKL)Contextual image classificationbusiness.industryModel selectionPattern recognitionSupport vector machineComputingMethodologies_PATTERNRECOGNITIONKernel (image processing)Feature (computer vision)SimpleMKLKernel alignmentSupport vector machine (SVM)Artificial intelligencebusinessGradient descentcomputer2009 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Model selection based product kernel learning for regression on graphs

2013

The choice of a suitable graph kernel is intrinsically hard and often cannot be made in an informed manner for a given dataset. Methods for multiple kernel learning offer a possible remedy, as they combine and weight kernels on the basis of a labeled training set of molecules to define a new kernel. Whereas most methods for multiple kernel learning focus on learning convex linear combinations of kernels, we propose to combine kernels in products, which theoretically enables higher expressiveness. In experiments on ten publicly available chemical QSAR datasets we show that product kernel learning is on no dataset significantly worse than any of the competing kernel methods and on average the…

Graph kernelTraining setMultiple kernel learningComputer sciencebusiness.industryPattern recognitionSemi-supervised learningMachine learningcomputer.software_genreKernel (linear algebra)Kernel methodKernel embedding of distributionsPolynomial kernelKernel (statistics)Radial basis function kernelArtificial intelligenceTree kernelbusinesscomputerProceedings of the 28th Annual ACM Symposium on Applied Computing
researchProduct